
Instant Learning for Supervised Learning Neural Networks:
A Rank-Expansion Algorithm

C. L. Philip Chen and Jiyang Luot

Deparunent of Computer Science and Engineering
Wright State University, Dayton, OH 45435

tDepartment of Computer Science and Technology
Tsinghua University, Beijing, PR China

ABSTRACT

An one-hidden layer neural network architecture is presented. An instant learning algorithm is given to
decide the weights of a supervised leaming neural network. For an n dimensional, N-pattern training set, a
maximum of N-r hidden nodes are required to leam all the patterns within a given precision (where r is the
rank, usually the dimension, of the input pattans). Using the inverse of activation function, the algorithms
transfer the output to the hidden layer, add bias nodes to the input, expand the rank of input dimension. The
proposed architecture and algorithm can obtain either exact solution or minimum least square error of the
inverse activation of the output. The leaming error only occurs when applying the inverse of activation func-
tion. Usually, this can be controlled by the given precision. Several examples show the very promising result.

Keywords:
Neural networks, Supervised Learning, Instant Learning, Bias nodes, Rank-Expansion.

Notations:
N :
n :

m :
A :
r :
A _ :
a :
T :

a:

0-' :

B :

Number of patterns in the training set.
Dimension of an input pattem, n I N.
Dimension of an output pattem.
Matrix of input patterns, with N rows and n columns.
Rank of matrix A, input patterns of the training set listed in matrix form, n I r I N.
An N by (N-r) matrix, where the columns of this matrix linearly independent with the A matrix.
A new matrix combining A and A _ , i = [A 141.
Output patterns listed in matrix form, N rows and m columns

Nonlinear activation function, a(x) = -.

Inverse of nontinear activation function. d (x) = - III-.

A matrix obtained by applying 0-l to each element of T. When the element of T is -1 or 1, a smaller
value (e.g., -0.999 or 0.999) is given depending upon p i s i o n requirement, before applying a-'..

e x - e - x

eX+e-'
1 l+x
2 1-x

[A I B] :The matrix combining A and E .
W : Weight matrix of the network.

1. Introduction:

The function of a node in a neural network can be described as: o = a (&wixi), where o is the output of
the node, xi is the ith input, wi is the synaptic connection, or weight, for the irh input, and a is the nonlinear
activation function,

0-7803-1901-X/94 $4.00 01994 EEE 78 1 November 30, 1993

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on April 07,2024 at 16:40:10 UTC from IEEE Xplore. Restrictions apply.

Consider a multi-layer neural network with n input nodes and m output nodes. For a given training set of
input patterns and corresponding output patterns, the supervised learning aims to learn all the patterns. That is
to decide all the synaptic connections or to find out all the weights, such that the network will map the input in
R" to the output in Rm. Let Vi be the output of the ith layer; the weight matrix W' be the synaptic connec-
tions between layer i and layer i+l; The output function of the ith layer, V i , can be represented by a linear
matrix operation and nonlinear (T operation, i.e., Vi = d (Vi-1.w '-'),

Recently, effort has been made on design a network architecture for fast learning, adjust initial weight
matrix for learning, and design a fast learning algorithm [1-4]. The existing back-propagation algorithm decides
the weight matrices using gradient descent methods. Based on back-propagation training algorithm, the net-
works converge to the smallest error after repeatedly changing the weights on the gradient direction. However,
the network architecture must be given before the training can be started, and the long-lasting training time has
been criticized recently [1-41.

Least Squares Back-propagation (LSB) is a learning algorithm that bases on linear least squares computa-
tion [5]. In this algorithm, the training of a multi-layer neural network is performed by separating the linear and
nonlinear parts of each layer. The output of each layer is converted by the inverse of the nonlinear activation
function, and the network is trained by a linear least squares computation. In many cases, however, one pass of
this algorithm can not train the network to obtain the least error. In order to reduce the error, the authors sug-
gested to iterately apply linear least squares computation back and forth through the layers. But unfortunately,
for many problems, though the error could be reduced to a smaller number after the first pass, it would not con-
tinue to decrease further on. Another disadvantage is that this algorithm does not suggest a good network archi-
tecture.

In order to reduce training time, Cascade-Correlation aims to learn the training set through a dynamic pro-
cedure, starting from the simplest architecture without hidden nodes [6]. If the error remains large, then the
algorithm dynamically adds a node in a new hidden layer, adjusts the weights for this hidden node, and again
trains the output layer of the new network to achieve less error. In this way it is possible to achieve least hid-
den nodes for the neural network, but it takes much time to train the weights of both the hidden nodes and the
output layer using gradient descent method. Also, since the training may involve many hidden nodes each in a
different layer, this also increases the responding time from receiving the input to turning out the output.

In this paper, we propose an one-hidden layer architecture and design a fast learning algorithm that obtains
the weight matrices with only a few matrix operations. With at most N-r hidden nodes (where r is the rank of
the input patterns forming as a matrix form, usually the dimension of the input), the designed neural network
maps the input patterns in the training set to the desired output patterns within required precision. In our
method, the linear and nonlinear parts of the output of the output layer are separated. We then apply the inverse
of the nonlinear activation function to the outputs. This way the optimization of the weight matrices can be
done without the nonlinear part. The weight matrices can be found by solving linear matrix computation. Next
section, the supporting theorem and architecture are given.

2. Theorem and Algorithm
2.1. The Theorem

Theorem 1: Consider a systems of equations AW = B , and denote the augmented matrix of the system
A' = [A I B 1. Assume that W is an n*m matrix. (1) The system AW = B has a solution if and
only if rank(A) = rank(A'). (2) The system AW = B has a unique solution if and only if
rank(A) = n = rank(A').

Proof: See [7].
In the supervised learning problem, given the A and T matrix, the problem is to find the weight matrix,

W . In order to eliminate the non-linear computation on the output, the B is found by taking the inverse of the
o function, i.e., B = o-' (T). In order to have a solution or a unique solution, the above conditions must be

Philip C k n ond J. h 782 November 30,1993

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on April 07,2024 at 16:40:10 UTC from IEEE Xplore. Restrictions apply.

met. However, in supervised learning, the A matrix (the training pattern), can not always meet the above
requirement for most problems. For the training matrix, A , with dimension N * n , the output matrix, T (thus
B), with dimension N * m , the W matrix must be well defined.

In order to solve the above equation, the back-propagation algorithm and LSB algorithm try to solve the
W (either one hidden-layer or multiple layers) using gradient decent or pseudo-inverse of A matrix, respectively.
Functional link neural network, however, expands the input dimension to a higher dimension by adding the
higher order nodes to satisfy, hopefully, the full rank condition. If the rank of A can be increased from r to
rank (A') = n , then the unique solution, W, can be solved easily. In other words, A matrix will h?ve a full rank
if n-r additional linearly independent columns are added to it. Denote the new formed matrix, A = [A I A, I,
where A_ is the maaix representation of the additional linearly independentIcolumns. In most case, if n = r and
rank(A)#ran&([A I B]),thentherankofA canbeincreasedtorank(A)=q=rank([A I B])byadding
q-r additional linearly independent columns, then a unique solution,aW, can be found. If r = n and N-r ad$-
tional linearly independent columns are added to the A matrix then A is the square matrix. As a result, rank (A)
equals to rank([A I A_ IB I). The weight matrix W is simply A" B .

T =

2.2 The Algorithm

1 -1 -1
-1 1 -1
1 -1 -1

-1 1 -1
-1 -1 1
-1 -1 1
-1 -1 1
-1 1 -1

- 1 -1 -1,

As we mentioned previosfsly, the maximum number of hidden nodes to be added is N - r . Obviously, we
can expand the A matrix to A directly by adding N - r linear independent columns and solve W = A-' B
instantly. The rank of matrix A can be easily increased by one if a constant bias node with strength 1 or -1 is
always accompanied with the input. In this case, there are N - r -1 hidden nodes.

Based on the above discussion, the algorithm is below.

1
2
3

-1

-

-

Algorithm Rank-Expansion with Instant Learning (REIL).
Input:
Output: The weight matrix, W , and the neural network.

The input pattem matrix, A , the output matrix, T, precision, and the error tolerance.

-T

4 '

Step 1. Chop output elements in T to be within (-1.1) according to the precision.
Step 2. Calculate B = o-'(T).
Step 3. Add a constant bias node "1" (or "-1") to the input node.
Step 4. Add N-r-1 hidden nodes and assign random weights.
Step 5. Solve weight, W = a-'. B .
End of Algorithm REIL

3. Testing Examples

Example 1: Find the network weight for the given problem [81 (a constant bias "-1" is added to the A
matrix):

[a A+ 1
4

t-1

1
2
1
8

-1

-

-

3
4
1
8

-1

-

-

3
4
1
4

-1

-

-

1
4
1
2

-1

-

-

1
2
1
2

-1

-

-

3
4
1
2

-1

-

-

1
4
3
4

-1

-

-

We use the algorithm REIL to solve this problem. We add hidden bias nodes one by one. Figures 1 and
2 show the convergeness of the algorithm. From Fig. 1 and Fig. 2, we can see that after adding the fifth hidden
node, the error is already ignorably small (maximum error = 0.0639242, Mean-Squared Error = 0 . m) . If

Philip Chcn and J. Lao 783 December 1, 1993

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on April 07,2024 at 16:40:10 UTC from IEEE Xplore. Restrictions apply.

we add one additional node to the hidden layer, The result is shown in Fig. 3 and Fig. 4. Now the maximum
error is 0.001, the amount we chopped off, and The Mean-Squared Error is 0. The training only involves only a
few mamx operations, and we are able to obtain the solution instantly.

For this problem, we also applied Least Squates Back-propagation [5] to train a one-hidden-layer network
with 6 hidden nodes, the result varies each time we run the algorithm. Fig. 5 (Maximum error) and Fig. 6
(Mean-Sqd-Error) show the best result of many runs. Fig. 7 (Maximum error) and Fig. 8 (Mean-Squared-
Error) show the result of the worst case in many runs. In our simulation, the maximum error remains larger than
1.0 in most cases. Similarly, we also applied Back-propagation to solve this problem, using a neural network
with one hidden layer of 6 nodes, after 2000 epochs, the training error still remained large. Each epoch takes
more time than we add a bias node using Algorithm REIL. The training result is shown in Fig. 9 (Maximum
error) and Fig. 10 (Mean-Squared-Error).

Example 2: Consider a nonlinear mapping of eight inputs, x i , and three outputs, yi , defined by [51

y l = (x] * x z + x . j * x4+x5 * x 6 + x 7 * x 8) / 4
y z = (X I + x 2 + x3 + x4 + x 5 + x6 + x7 + x & 8
Y 3 = (1 - Y1)O.s

The 50 sets of input patterns, x i , i = 1 . . . 8, are generated randomly within the range of (-1, 1); the out-
puts y i , i = 1, 2, 3, are computed from the above three equations. Using Algorithm REIL, the learning result is
significant. As shown in Fig. 11, the Mean-Squared Error reduces to 0.000746 at first run (with only constant
bias -1). It decreases monotonely to O.ooOo14 after adding 40 bias nodes. Fig. 12 shows the maximum error
decreasing as bias nodes added. With only a constant bias -1, the maximum error was 0.107, it decreased to 0.02
after adding 40 bias nodes. Table 1 lists the the error.

4. Conclusion

We have proposed a neural network architecture and algorithm for finding the weights of the supervised
learning problem. We also provide the upper bound of the number of the hidden nodes to be able to solve the
weight matrix exac!y. The weight matrix, W. relys on the weight between the input and hidden layer. Once
rank(k) = rank([A I B 3) a global minimum of the weight space with corresponding hidder-layer random
weights can be obtained. Several tested examples show the efficiency the proposed architecture and algorithms.

5. References

V. Nedeljkovic, “A Novel Multilayer Neural Networks Training Algorithms that Minimizes the Probabil-
ity of Classification Error,” IEEE Trans. on Neural Networks, Vol. 4, No. 4, pp. 650-659, 1993.
Yoh-Han Pao, “Adaptive Pattern Recognition and Neural Networks,” Addison-Wesley, N.Y., 1989.
L. F. Wessels and E. Bamard, “Avoiding False Local Minima by Proper Initialization of Connection,”
IEEE Trans. on Neural Networks, Vol. 3, No. 6, pp. 899-905, 1992.
P. L. Bartlett and T. Downs, “Using Random Weights to Train Multilayer Networks of Hard-Limiting
Units,” IEEE Trans. on Neural Networks, Vol. 3, No. 2, pp. 202-210, 1992.
Friedrich Biegler-Konig and Frank Barmann, “A Learning Algorithm for Multilayered Neural Networks
Based On Linear Least Squares Problems,” Neural Networks, Volume 6, Number 1, pp.127-131, 1993.
Scott E. Fahlman and Christian Lebiere, “The Cascade-Correlation Learning Architecture” Neural Infor-
mation Processing Systems, Vol 2, 1990.
Bill Jacob, Linear Algebra, W. H. Freeman and Company, NY, 1990.
Jacek M. Zurada, “Introduction to Artificial Neural Systems’’ West Publishing Company, 1992
R. W. Farebrother, “Linear Least Squares Computations” Marcel Dekker, Inc. New York, 1988.
William W. Hager ,“Applied Numerical Linear Algebra” Prentice Hall, Eaglewood Cliffs, New Jersey.

Philip Chen and J . Luo
7 84 December I, I993

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on April 07,2024 at 16:40:10 UTC from IEEE Xplore. Restrictions apply.

Table 1 . Learning E m for Example 2 using REELS Algorithm

Added
Nodes Maxerror Mean-Squareerror
1 0.1075 0.000746
5 0.0871 0.000612
10 0.0835 0.000507
12 0.0835 O.OOO446
24 0.0498 0.000217
36 0.0327 O.ooOO5 1
40 0.O200 0.ooOO 14

maxer:Fig. 1 MSE:Fig. 2

1.25

epoch
0.25

epoch

0 e : : h

0 1 2 3 4 5 6 7

maxer:Fig. 3 MSE:Fig. 4

i i : I ~ ~
0.75
0.5

0.25
0 1 2 3 4 5 6 7

epoch

~~~~~ 

0.75 
0.5 

0.25 
epoch 

0 1 2 3 4 5 6 7  

maxer:Fig. 5 MSE:Fig. 6 

21 

epoch 
0.251 . , 

0 1 2 3 4 5  

2 
1.751 

epoch 

Philip C h n  and J .  Lao 785 November 30, 1993 

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on April 07,2024 at 16:40:10 UTC from IEEE Xplore.  Restrictions apply. 



MSE:Fig. 8 

1.25 

0.025 

0.02 

0.015 

0.01 

maxer:Fig. 7 

- 

. 

’ 

. 
i 

i.7gl- 1.5 

1.251 

0.25 o 6 : : L  0 1 2 3 4 5  epoch 

MSE:Fig. 10 maxer:Fig. 9 

0.75 
0.5 

poch poch 
0 500 1000 1500 2005 0 500 1000 1500 2008 

ERR I U X :  F i g .  11 

0 . 2  

0.175 

0.15 

0.125 

0.1 . 
O.OJ5 ’ 

0 . 0 5  . 

0.025 . 

10 20 30 I O  

USE: F i g .  12 

t 0.005 

.posh 

786 

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on April 07,2024 at 16:40:10 UTC from IEEE Xplore.  Restrictions apply. 


